top of page

Publications

156.

Tannous, R., Shelef, O., Kopp, T., Fridman, M., Shabat, D.

Hyper-Responsive Chemiluminescent Probe Reveals a Distinct PYRase Activity in Pseudomonas aeruginosa

Bioconjug. Chem., 2024, DOI: 10.1021/acs.bioconjchem.4c00015

156.tiff

155.

Redy Keisar, O., Pevzner, A., Fridkin, G., Shelef, O., Shabat, D., Ashkenazi, N.

Highly sensitive chemiluminescence sensors for the detection and differentiation of chemical warfare agents

Anal Methods 2024, DOI: 10.1039/d3ay02054a

155.png

154.

Liubomirski, Y., Tiram, G., Scomparin, A., Gnaim, S., Das, S., Gholap, S., Ge, L., Yeini, E., Shelef, O., Zauberman, A., Berger, N., Kalimi, D., Toister-Achituv, M., Schröter, C., Dickgiesser, S., Tonillo, J., Shan, M., Deutsch, C., Sweeney-Lasch, S., Shabat, D., Satchi-Fainaro, R.

Potent antitumor activity of anti-HER2 antibody-topoisomerase I inhibitor conjugate based on self-immolative dendritic dimeric-linker

J. Control Release, 2024, 367,148-157

153.

Shelef, O., Kopp, T., Tannous, R, Jospe-Kaufman, M., Arutkin, M., Reuveni, S., Shabat, D., Fridman, M.

Enzymatic Activity Profiling Using an Ultra-Sensitive Array of Chemiluminescent Probes for Bacterial Classification and Characterization

J. Am. Chem. Soc., 2024, 146, 5263–5273

153.png

152.

Tannous, R., Shelef, O., Gutkin, S., David, M., Leirikh, T., Ge, L., Jaber, J., Zhou, Q., Ma, P., Fridman, M., Spitz, U., Houk, K.N., Shabat, D.

Spirostrain-Accelerated Chemiexcitation of Dioxetanes Yields Unprecedented Detection Sensitivity in Chemiluminescence Bioassays

ACS. Cent. Sci., 2024, 10, 28–42

151.

Gutkin, S., Tannous, R., Jaber, Q., Fridman, M., Shabat, D.

Chemiluminescent Duplex Analysis by Phenoxy-1,2-Dioxetane Luminophores with Color Modulation

Chemical Science, 2023, 14, 6953 - 62

151.png

150.

Blau, R., Shelef, O., Shabat, D., Satchi-Fainaro, R.

Chemiluminescent probes in cancer biology

Nat. Rev. Bioeng., 2023, 1, 648–664

149.

Tannous, R., Gutkin, S., Baran, PS., Shabat, D.

Synthesis and Chemiexcitation of a Distinct Chemiluminescent Luminophore based on a Curcumin Scaffold

Isr. J. Chem., 2023, e202300066

149.png

148.

David, M., Jaber, Q., Fridman, M., Shabat, D.

 

Dual Chemiexcitation by a Unique Dioxetane Scaffold Gated by an OR Logic Set of Triggers

Chem. Eur. J., 2023, 29, e202300422

148.png

147.

Shelef, O., Gutkin, S., Feder, D., Ben-Bassat, A., Mandelboim, M., Haitin, Y., Ben-Tal, N., Bacharach, E., Shabat, D.

 

Ultrasensitive Chemiluminescent Neuraminidase Probe for Rapid Screening and Identification of Small-molecules with Antiviral Activity Against Influenza A Virus in Mammalian Cells

Chem. Sci., 2022, 13, 12348–57

146.

Yucknovsky, A., Rich, BB., Gutkin, S., Ramanthrikkovil Variyam, A., Shabat, D., Pokroy, B., and Amdursky, N.

Application of Super Photoacids in Controlling Dynamic Processes: Light-Triggering the Self-Propulsion of Oil Droplets

J. Phys. Chem. B. 2022, 126, 33, 6331–37  

145.

Peukert, C., Gholap, S.G., Green, O., Pinkert, L., Heuvel, J.V., Ham, M.V., Shabat, D., and Broenstrup, M.

Enzyme-activated, Chemiluminescent Siderophore-Dioxetane Probes Enable the Selective and Highly Sensitive Detection of Bacterial Pathogens

Angew. Chem. Int. Ed. 2022, 61, e202201423

144.

Gnaim, S., Gholap, S.P., Ge, L., Das, S., Gutkin, S., Green, O., Shelef, O., Hananya, N., Baran, P.S., Shabat, D.

Modular Access to Diverse Chemiluminescent Dioxetane-Luminophores Through Convergent Synthesis

Angew. Chem. Int. Ed. 2022,  61, e202202187

144.png

143.

Shelef, O., Gnaim, S., Shabat, D.

Self-Immolative Polymers: An Emerging Class of Degradable Materials with Distinct Disassembly Profiles

J. Am. Chem. Soc. 2021, 143, 21177-88

142.

Shelef, O., Sedgwick, A.C., Pozzi, S., Green, O., Satchi-Fainaro, R., Shabat, D., Sessler, J.L.

Turn-On Chemiluminescence-Based Probes for Monitoring Tyrosinase Activity in Conjunction with Biological Thiols

Chem. Commun., 2021,  57, 11386-89.

142.png

141.

Gutkin, S., Gandhesiri, S., Brik, A., Shabat, D

Synthesis and Evaluation of Ubiquitin-Dioxetane Conjugate as a Chemiluminescent Probe for Monitoring Deubiquitinase Activity

Bioconjug. Chem.,  2021, 32, 2141-47.

141.tiff

140.

Ponomariov, M., Shabat, D., Green, O

Universal Access to Protease Chemiluminescent Probes through Solid-Phase Synthesis

Bioconjug. Chem., 2021, 32, 2134-40.

140.jpeg

139.

Shilo, M., Oved, H., Wertheim, L., Gal, I., Noor, N., Green, O., Baruch, ES., Shabat, D., Shapira, A., Dvir, T

Injectable nanocomposite implants reduce ROS accumulation and improve heart function after infarction

Adv. Sci., 2021, 8, 2102919

138.

Ye, S., Yang, B., Wu, M., Chen, Z., Shen, J., Shabat, D., Yang, D

Recurring Real-Time Monitoring of Inflammations in Living Mice with A Chemiluminescent Probe for Hypochlorous Acid

CCS Chem. 2022, 4, 1871–78

137.

Gholap, S.P., Yao, C., Green, O., Babjak, M., Jakubec, P., Malatinský, T., Ihssen, J., Wick, L., Spitz, U., Shabat, D

Chemiluminescence Detection of Hydrogen Sulfide Release by beta-Lactamase-catalyzed beta-Lactam Biodegradation: Unprecedented Pathway for Monitoring beta-Lactam Antibiotic Bacterial Resistance

Bioconjug. Chem., 2021, 32, 991-1000

136.

Babin, B.M., Fernandez-Cuervo, G., Sheng, J., Green, O., Ordonez, A.A, Turner, M.L., Keller, L.J., Jain, S.K., Shabat, D., Bogyo, M.

Chemiluminescent Protease Probe for Rapid, Sensitive, and Inexpensive Detection of Live Mycobacterium tuberculosis

ACS. Cent. Sci., 2021, 7, 803-14

135.

Scott, JI, Gutkin, S., Green, O., Thompson, EJ., Kitamura, T., Shabat, D., Vendrell, M.

A Functional Chemiluminescent Probe for in vivo Imaging of Natural Killer Cell Activity against Tumours

Angew. Chem. Int. Ed. 2021, 60, 5699-5703

134.

Gutkin, S., Green, O., Raviv, G., Shabat, D., Portnoy, O.

Powerful Chemiluminescence Probe for Rapid Detection of Prostate Specific Antigen Proteolytic Activity: Forensic Identification of Human Semen

Bioconjug. Chem., 2020, 31, 2488-93

133.

Yang, M., Zhang, J., Shabat, D., Fan, J., Peng, X.

 

Near-Infrared Chemiluminescent Probe for Real-Time Monitoring Singlet Oxygen in Cells and Mice Model

 

ACS Sensors, 2020,  10, 3158-64.

132.

Ye, S., Hananya, N., Green, O., Chen, H., Qian Zhao, A., Shen, J., Shabat, D., Yang, D.

A Highly Selective and Sensitive Chemiluminescent Probe for Real-Time Monitoring of Hydrogen Peroxide in Cells and Animals

 Angew. Chem. Int. Ed. 2020, 59, 14236-30.

131.

Das, S., Ihssen, J., Wick, L., Spitz, U., Shabat, D.

Chemiluminescence Carbapenem-based Molecular Probe for Detection of Carbapenemase Activity in Live Bacteria

Chem. Eur. J., 2020, 26, 3647-52.

130.

Gnaim, S., Shabat, D.

Activity-Based Optical Sensing Enabled by Self-Immolative Scaffolds: Monitoring of Release Events by Fluorescence or Chemiluminescence Output

Acc. Chem. Res., 2019, 52, 2806-17.

129.

Hananya, N., Press, O., Das, A., Scomparin, A., Satchi-Fainaro, R., Sagi, I., Shabat, D.

Persistent Chemiluminescent Glow of Phenoxy-Dioxetane Luminophore Enables Unique CRET-Based Detection of Proteases

 

Chem. Eur. J., 2019,  25, 14679-87 

128.

Miranda-Apodaca, J., Hananya, N., Velázquez-Campoy, A., Shabat, D., Arellano JB.

Emissive Enhancement of the Singlet Oxygen Chemiluminescence Probe after Binding to Bovine Serum Albumin

 

Molecules, 2019, 24, 2422.

127.

Hananya, N., Shabat, D

 

Recent Advances and Challenges in Luminescent Imaging: Bright Outlook for Chemiluminescence of Dioxetanes in Water

ACS Central Sci., 2019,  5, 949-59.

126.

Roth-Konforti, M., Green, O., Hupfeld, M., Fieseler, L., Heinrich, N., Ihssen, J., Vorberg, R., Wick, L., Spitz, U., Shabat, D.

 

Ultrasensitive Detection of Salmonella and Listeria Monocytogenes by Small-Molecule Chemiluminescence Probes

 

Angew. Chem. Int. Ed. 2019, 58, 10361-67.

125.

Gnaim, S., Shabat, D.

 

Chemiluminescence Molecular Probe with a Linear Chain Reaction Amplification Mechanism

 

Org. Biomol. Chem., 2019,17, 1389-94.

124.

Gnaim, S., Scomparin, A., Eldar-Boock, A., Bauer, CR., Satchi-Fainaro, R.,Shabat, D.

 

Light Emission Enhancement by Supramolecular Complexation of Chemiluminescence Probes Designed for Bioimaging

 

Chem. Sci.,  2019, 10, 2945 - 2955

123.

Son, S., Won, M., Green, O., Hananya, N., Sharma, A., Jeon, Y., Kwak, JH., Sessler, J. L., Shabat, D., Kim, JS.

 

Chemiluminescent Probe for the In Vitro and In Vivo Imaging of Cancers Over-expressing NQO1

 

Angew. Chem. Int. Ed. 2019, 58, 1739-94 

122.

Hananya, N., Reid, J.P., Green, O., Sigman, M.S., Shabat, D.

 

Rapid Chemiexcitation of Phenoxy-Dioxetane Luminophores Yields Ultrasensitive Chemiluminescence Assays

 

Chem. Sci., 2019, 10, 1380-1385

121.

 Edri, R., Gal I, Noor, N., Harel, T., Fleischer, S., Adadi, N., Green, O., Shabat, D., Heller, L., Shapira, A,. Gat-Viks, I., Peer, D., Dvir, T.

 

Personalized Hydrogels for Engineering Diverse Fully Autologous Tissue Implants

 

Adv. Mater., 2019, e1803895.

120.

Roth-Konforti, M.E., Comune, M., Halperin-Sternfeld, M., Grigoriants, I., Shabat, D., Adler-Abramovich, L.

 

UV Light-Responsive Peptide-Based Supramolecular Hydrogel for Controlled Drug Delivery

 

MacroMol Rapid Commun., 2018, 39, 1800588.

119.

Gajst O, Green O, Pinto da Silva L, Esteves da Silva JCG, Shabat D, Huppert D.

 

Excited-State Proton Transfer to H2O in Mixtures of CH3CN-H2O of a Superphotoacid, Chlorobenzoate Phenol Cyanine Picolinium (CBCyP).

 

J. Phys. Chem. A. 2018, 122, 8126-8135.

118.

Gnaim, S., Scomparin, A., Das, S., Blau, R., Satchi-Fainaro, R., Shabat, D.

 

Real-Time Monitoring of Prodrug Activation by Direct-Mode of Chemiluminescence

 

Angew. Chem. Int. Ed. 2018, 57, 9033-9037

117.

Bruemmer, K.V., Green, O., Su, T. A., Shabat, D., Chang, C. J.

 

Chemiluminescent Probes for Activity-Based Sensing of Formaldehyde Released from Folate Degradation in Living Mice

 

Angew. Chem. Int. Ed. 2018, 57, 7508-7512

116.

Blau, R., Epshtein, Y., Tiram, G., Pisarevsky, E., Israeli, S., Yeini,. E., Krivitsky, A., Eldar-Boock, A., Ben-Shushan, D., Green, O., Ben-Nun, Y., Merquiol, E., Schwartz, H., Blum, G., Erez, N., Grossman, R., Ram, Z., Shabat, D., Satchi-Fainaro, R.

 

Image-Guided Surgery Using Near-Infrared Turn-ON Fluorescent Nanoprobes for Precise Detection of Tumor Margins

 

Theranostics, 2018, 8, 3437-3460.

115.

Sun, X., Shabat, D., Phillips, S.T., Anslyn, E.V.

 

Self‐propagating amplification reactions for molecular detection and signal amplification: Advantages, pitfalls, and challenges

 

J. Phys. Org. Chem. 2018; 31:e3827

114.

Gnaim, S., Shabat, D.

 

Chemiluminescence Molecular Probe with Intrinsic Auto-Inductive Amplification: Incorporation of Chemiexcitation in a Quinone-Methide Elimination

 

Chem. Commun., 2018, 54, 2655-58

113.

da Silva, LP., Ori Green, Gajst, O., Simkovitch, R., Shabat, D., Esteves da Silva, J.C.G., Huppert, D.

 

Excited-State Proton Transfer of Phenol Cyanine Picolinium Photoacid

 

ACS OMEGA, 2018, 3, 2058-73

112.

 Eilon-Shaffer, T., Roth-Konforti, M., Eldar-Boock, A., Satchi-Fainaro, R., Shabat, D.

 

Ortho-Chlorination of phenoxy 1,2-dioxetane yields superior chemiluminescence probes for in vitro and in vivo imaging

 

Org. Biomol. Chem., 2018, 16, 1708-12

111.

Gnaim, S., Green, O., Shabat, D.

 

The Emergence of Aqueous Chemiluminescence: New Promising Class of Phenoxy 1, 2-Dioxetane Luminophores

 

Chem. Commun., 2018, 54, 2073-85

111.jpeg

110.

Gajst, O., Green, O., Simkovitch, R., Shabat, D., Huppert, D.

 

The photoacidity of phenol chloro benzoate cyanine picolinium salt photoacid in alkanols

 

J. Photochem. Photobiol. A: Chem. 2018, 353, 546–556.

109.

Roth-Konforti, M., Bauer, C., Shabat, D.

 

Unprecedented Sensitivity in a Probe for Monitoring Cathepsin B: Chemiluminescence Microscopy Cell-Imaging of a Natively Expressed Enzyme

 

Angew. Chem. Int. Ed. 2017, 129, 15839-44.

108.

Hananya, N., Shabat, D.

 

A Glowing Trajectory between Bio- and Chemi-Luminescence: From Luciferin-based Probes to Triggerable Dioxetanes

 

Angew. Chem. Int. Ed. 2017, 56, 16454-63

108.jpg

107.

Green, O., Gnaim, S., Blau R, Eldar-Boock, A., Satchi-Fainaro, R., Shabat D.

 

Near-Infrared Dioxetane Luminophores with Direct Chemiluminescence Emission Mode

 

J. Am. Chem. Soc., 2017, 139, 13242-48.

106.

Green, O., Gajst, O., Simkovitch, R., Shabat, D., Huppert, D.

 

Chloro Benzoate Cyanine Picolinium Photoacid Excited-State Proton Transfer to Water

 

J. Photochem. Photobiol. A: Chem. 2017, 349, 230–237.

105.

Hananya N, Green O, Blau R, Satchi-Fainaro R., Shabat D.

 

A Highly-Efficient Chemiluminescence Probe for Detection of Singlet Oxygen in Living Cells

 

Angew. Chem. Int. Ed. 2017, 56, 11793-96.

104.

Gnaim, S., Shabat, D.

 

Self-Immolative Chemiluminescence Polymers: Innate Assimilation of Chemiexcitation in a Domino-Like Depolymerization

 

J. Am. Chem. Soc., 2017, 139, 10002-08

103.

Gopinath, P., Mahammed, A., Eilon-Shaffer, T., Nawatha, M., Ohayon, S., Shabat, D., Gross, Z., Brik, A.

 

Switching Futile para‐Quinone to Efficient ROS Generator: Ubiquitin Specific Protease‐2 Inhibition, Electrocatalysis and Quantification

 

ChemBioChem, 2017, 18, 1683-87.

102.

Green, O., Gajst, O., Simkovitch, R., Shabat, D., Huppert, D.

 

New Phenol Benzoate Cyanine Picolinium Salt Photoacid Excited-State Proton Transfer

 

J. Phys. Chem. A. 2017, 16, 3079-87.

101.

Green, O., Eilon, T., Hananya, N., Gutkin, S., Bauer, CR., Shabat, D.

 

Opening a Gateway for Chemiluminescence Cell Imaging: Distinctive Methodology for Design of Bright Chemiluminescent Dioxetane Probes

 

ACS Central Sci., 2017, 4, 349-58.

100.

Hananya, N., Eldar-Boock, A., Bauer, CR., Satchi-Fainaro, R., Shabat, D.

 

Remarkable Enhancement of Chemiluminescent Signal by Dioxetane-Fluorophore Conjugates: Turn-ON Chemiluminescence Probes with Color Modulation for Sensing and Imaging

 

J. Am. Chem. Soc., 2016, 138, 13438-46.

99.

Shahal, T., Green, O., Hananel, U., Michaeli, Y., Shabat, D., Ebenstein, Y.


Simple and cost-effective fluorescent labeling of 5-hydroxymethylcytosine

Methods and Applications in Fluorescence, 2016, 4, 044003.

98.

Jeffet, J., Kobo, A., Su, T., Grunwald, A., Green, O., Nilsson, AN., Eisenberg, E., Ambjornsson, T., Westerlund, F., Weinhold, E., Shabat, D., Purohit, PK., Ebenstein, Y.

 

Super-Resolution Genome Mapping in Silicon Nanochannels

 

ACS Nano, 2016, 10, 9823-30.

97.

Gnaim, S., Scomparin, A., Li, X., Baran, P.S., Rader, C., Satchi-Fainaro, R., Shabat, D.

 

Tagging the Untaggable: A Difluoroalkyl-Sulfinate Ketone-Based Reagent for Direct C-H Functionalization of Bioactive Heteroarenes

 

Bioconjugate Chem. 2016, 27, 1965-71.

96.

Green, O., Simkovitch, R., Pinto da Silva, L., Esteves da Silva, JC, Shabat, D., Huppert, D.

 

Excited-State Proton Transfer and Formation of the Excited Tautomer of 3-Hydroxypyridine-Dipicolinium Cyanine Dye

 

J. Phys. Chem. A. 2016, 120, 6184-99.

95.

Kisin-Finfer, E., Simkovitch, R., Shabat, D., Huppert, D.

 

Dormant acceptor activation of 10-hydroxybenzoquinline derivatives by excited-state intramolecular proton transfer

 

J. Photochem. Photobiol. A: Chem., 2016, 326, 89-99

94.

Herbst, E., Shabat, D.

 

FRET-based cyanine probes for monitoring ligation reactions and their applications to mechanistic studies and catalyst screening

 

Org. Biomol. Chem., 2016, 12, 3715-28

93.

Shaulov-Rotem, Y., Merquiol, E., Weiss-Sadan, T., Ofra Moshel , Salpeter, S., Shabat, D., Kaschani, F., Kaiser, M., Blum, G.

 

A novel quenched fluorescent activity-based probe reveals caspase-3 activity in the endoplasmic reticulum during apoptosis

 

Chem. Sci., 2016, 7, 1322-37.

92.

Roth, M. E., Green O., Gnaim S., Shabat D.

 

Dendritic, Oligomeric, and Polymeric Self-Immolative Molecular Amplification.

 

Chem. Rev., 2016, 116, 1309-52

91.

Kisin-Finfer E., Redy-Keisar O., Roth M., Ben-Eliyahu R., Shabat D.

 

Molecular Insight into Long-Wavelength Fluorogenic Dye Design: Hydrogen Bond Induces Activation of a Dormant Acceptor

 

Chem. Eur. J., 2015, 21, 18566-70

90.

Redy-Keisar, O.,Ferber, S., Satchi-Fainaro, R., Shabat, D.

 

NIR fluorogenic dye as a modular platform for prodrug assembly:Real-time in vivomonitoring of drug release

 

ChemMedChem, 2015, 10, 999-1007.

89.

Redy-Keisar, O., Huth, K.,Vogel, E.,Lepenies, B., Seeberger, P.H., Haag., R., Shabat, D.

 

Enhancement of Fluorescent Properties of Near-Infrared Dyes using Clickable Oligoglycerol Dendrons

 

Org. Biomol. Chem., 2015, 13, 4727-32.

88.

Gnaim, S., Shabat, D.

 

Quinone-Methide Species, A Gateway to Functional Molecular Systems: From Self-Immolative Dendrimers to Long-Wavelength Fluorescent Dyes

 

Acc. Chem. Res., 2014, 47, 2970-2984

87.

Shahal-Koren, T., Gilat, N., Michaeli, Y., Redy-Keisar, O., Shabat, D., Ebenstein, Y.

 

Spectroscopic quantification of global 5'hydroxymethylcytosine in genomic DNA

 

Anal. Chem., 2014, 86, 8231-7.

86.

Simkovitch, R., Akulov K., Shomer, S., Roth M.E., Shabat, D., Schwartz, T., Huppert, D.

 

Comprehensive Study of Ultrafast ESPT in Water and D2O Provides the Missing RO-⋯H+ Ion-Pair Fingerprint

 

J. Phy. Chem. A, 2014, 118, 4425-43.

85.

Kisin-Finfer., Ferber, S., Blau, R., Satchi-Fainaro, R., Shabat, D.

 

Synthesis and Evaluation of New NIR-FluorescentProbes for Cathepsin B: ICT vs. FRET as a Turn-ON Mode-of-Action

 

Bioorg. Med. Chem. Lett., 2014, 24, 2453-58.

84.

Ferber, S., Baabur-Cohen, H., Blau, B., Epshtein, Y., Kisin-Finfer, E., Redy, O., Shabat, D., Satchi-Fainaro, R.

 

Polymeric nanotheranostics for real-time non-invasive optical imaging of breast cancer progression and drug release

 

Cancer Lett., 2014, 352, 81-89

83.

Simkovitch, R., Shomer, S., Gepshtein, R., Shabat, D., Huppert, D.

 

Excited-State Proton Transfer from Quinone-Cyanine 9 to Protic Polar-Solvent Mixtures

 

J. Phy. Chem. A, 2014, 118, 1832-40. 

82.

Mizrahy, S., Goldsmith, M., Leviatan-Ben-Arye, S., Kisin-Finfer, E., Redy, O., Srinivasan, S., Godlin, B., Shabat, D., Godin, B., Peer, D.

 

Tumor targeting profiling of hyaluronan-coated lipid based- nanoparticles

 

Nanoscale, 2014, 6, 3742-52

81.

Cohen K, Emmanuel R, Kisin-Finfer E, Shabat D, Peer D.


Modulation of Drug Resistance in Ovarian Adenocarcinoma using Chemotherapy Entrapped in Hyaluronan-Grafted Nanoparticle Clusters

ACS Nano, 2014, 8, 2183-2195.

80.

Redy, O., Kisin-Finfer, E., Ferber, S., Satchi-Fainaro, R., Shabat, D.

 

Synthesis and Use of QCy7-derived Modular Probes for Detection and Imaging of Biologically Relevant Analytes

Nature Protocols, 2014, 9, 27-36.

79.

Simkovitch, R., Shomer, S., Gepshtein, R., Roth, M. E., Shabat, D., Huppert, D.

Comparison of the Rate of Excited-State Proton Transfer from Photoacids to Alcohols and Water

J. Photochem. Photobiol. A: Chemistry, 2014, 277, 90-101.

78.

Sella, E., Shabat, D.

Hydroquinone-quinone oxidation by molecular oxygen: a simple tool for signal amplification through auto-generation of hydrogen peroxide

Org. Biomol. Chem., 2013, 11, 5074-8.

77.

Simkovitch, R., Karton-Lifshin, N., Shomer, S., Shabat, D., Huppert, D.

Ultrafast Excited-State Proton Transfer to the Solvent Occurs on a Hundred-Femtosecond Time-Scale

J. Phy. Chem. A, 2013, 117, 3405-13.

76.

Simkovitch, R., Shomer, S., Gepshtein, R., Shabat, D., Huppert. D.

Temperature Dependence of the Excited-State Proton-Transfer Reaction of QCy7

J. Phy. Chem. A, 2013, 3925-34.

75.

Zhou, Q., Ruffoni, A., Rianatassio, R., Fujiwara, Y., Sella, E., Shabat, D. Baran, PS.

Direct Synthesis of Fluorinated Heteroarylether Bioisosteres

Angew. Chem. Int. Ed. Engl., 2013, 52, 3949-52.

74.

Kisin-Finfer., E., Shabat, D.

New Repertoire of "Donor-Two-Acceptor" NIR Fluorogenic Dyes

Bioorg. Med. Chem. Lett., 2013, 21, 3602-8.

73.

Karton-Lifshin, N., Vogel, U., Sella, E., Seeberger, P.H., Shabat, D., Lepenies, B.

Enzyme-mediated nutrient release: glucose-precursor activation by β-galactosidase to induce bacterial growth

Org. Biomol. Chem., 2013, 11, 2903-10.

72.

Simkovitch, R., Kisin-Finfer, E., Shomer, S., Erez, Y., Gepshtein, R., Shabat D., Huppert, D.

Ultrafast Excited-State Proton Transfer from Hydroxycoumarin-Dipicolinium Cyanine Dyes

J. Photochem. Photobiol. A: Chem., 2013, 254, 45-53 

71.

Karton-Lifshin N,Albertazzi L,Bendikov M,Baran PS,Shabat D.

Donor-two-acceptor" dye design: a distinct gateway to NIR fluorescence

J Am Chem Soc., 2012, 134, 20412-20.

70.

Presiado I,Karton-Lifshin N,Erez Y,Gepshtein R,Shabat D,Huppert D.

Ultrafast proton transfer of three novel quinone cyanine photoacids

J Phys Chem A., 2012, 116, 7353-63.

69.

Redy, O., Shabat, D.

Modular Theranostic Prodrug based on a FRET-Activated Self-Immolative Linker

J. Control. Release , 2012, 164, 276-82.

68.

Huppert, D., Shabat, D., Presiado, I., Karton-Lifshin, N., Erez, Y., Gepshtein, R.

Ultrafast Excited-State Intermolecular Proton Transfer of Cyanine Fluorochrome Dyes

 

J. Phy. Chem. A, 2012, 116, 5-92.

67.

Redy, O., Kisin-Finfer, E., Sella, E., Shabat, D.


A Simple FRET-Based Modular Design for Diagnostic Probes

Org. Biomol. Chem., 2012, 10, 710-5.

66.

Karton-Lifshin, N., Shabat, D.


Exponential Diagnostic Signal Amplification via Dendritic Chain Reaction: The Dendritic Effect of a Self-Immolative Amplifier Component

New, J. Chem., 2012, 36, 386-93.

65.

Perry-Feigenbaum, R., Sella, E., Shabat, D.

 

AutoInductive Exponential Signal Amplification: A Diagnostic Probe for Detection of Fluoride

Chem. Eur. J., 2011, 17, 12123-8.

64.

Karton-Lifshin, N., Segal, E., Omer, L., Portnoy, M., Satchi-Fainaro, R., Shabat, D.

A Unique Paradigm for a Turn-ON Near-Infrared Cyanine-Based Probe: Non-Invasive Intravital Optical Imaging of Hydrogen Peroxide

J. Am. Chem. Soc., 2011, 133, 10960-5.

63.

Sella, E., Weinstain, R., Erez, R., Burns, Z. N., Baran, S. P., Shabat, D.

Sulfhydryl-Based Dendritic Chain Reaction

Chem. Commun., 2010, 21, 6575-7.

62.

Avital-Shmilovici, M., Shabat, D.

Dendritic Chain Reaction: Responsive Release of Hydrogen Peroxide upon Generation and Enzymatic Oxidation of Methanol

Bioorg. Med. Chem., 2010, 18, 3643-7.

61.

Sella, E., Lubelski, A., Klafter, J., Shabat, D.


Two-Component Dendritic Chain Reactions: Experiment and Theory

J. Am. Chem. Soc., 2010, 132, 3945-52.

60.

Avital-Shmilovici, M., Shabat, D.

 

Self-Immolative Dendrimers: A Distinctive Approach to Molecular Amplification

Soft Matter, 2010, 6, 1073-1080.

59.

Weinstain, R., Segal, E., Satchi-Fainaro, R., Shabat, D.


Real-Time Monitoring of Drug Release

Chem. Commun., 2010, 46, 553-5.

58.

Perry-Feigenbaum, R., Baran, S. P., Shabat, D.

 

The Pyridinone-Methide Elimination

Org. Biomol. Chem., 2009, 7, 4825-4828.

57.

Weinstein, R., Baran, S. P., Shabat, D.

Activity-Linked Labelling of Enzymes by Self-Immolative Polymers

Bioconjug. Chem., 2009, 20, 1783-1791.

56.

Sella, E., Shabat, D.

Dendritic Chain Reaction

J. Am. Chem. Soc., 2009, 131, 9934-6.

55.

Avital-Shmilovici, M., Shabat, D.


Enzymatic Activation of Hydrophobic Self-Immolative Dendrimers: The Effect of Reporters with Ionizable Functional Groups

Bioorg. Med. Chem. Lett., 2009, 19, 3959-62.

54.

Erez, R., Segal, E., Miller, K., Satchi-Fainaro, R., Shabat, D.

 

Enhanced Cytotoxicity of a Polymer-Drug Conjugate with Triple Payload of Paclitaxel

 

Bioorg. Med. Chem., 2009, 17, 4327-35.

53.

Stern, L., Perry, R., Ofek, P., R., Many, A., Shabat, D., Satchi-Fainaro, R.

 

A novel antitumor prodrug designed to be cleaved by the endoprotease legumain

 

Bioconjug. Chem., 2009, 20, 500-10.

52.

Miller, K., Erez, R., Segal, E., Shabat, D., Satchi-Fainaro, R.

Targeting Bone Metastases with a Bispecific Anticancer and Antiangiogenic Polymer–Alendronate–Taxane Conjugate

Angew. Chem. Int. Ed. Engl., 2009, 48, 2949-54.

51.

Sella, E., Shabat, D.


Self-Immolative Dendritic Probe for Direct Detection of Triacetone Triperoxide

Chem. Commun., 2008, 44, 5701-3.

50.

Erez, R., Shabat, D.

 

The Azaquinone-Methide Rearrangement: Comparison Study of 1, 6- and 1, 4-Eliminations under Physiological Conditions

Org. Biomol. Chem., 2008, 6, 2669-72.

49.

Weinstain, R., Sagi, A., Karton, N., Shabat, D.

Self-Immolative Comb-Polymers: Multiple-Release of Side-Reporters by a Single Stimulus Event

Chem. Eur. J., 2008, 14, 6857-61.

48.

Sagi, A., Weinstain, R., Karton, N., Shabat, D.

Self-Immolative Polymers

J. Am. Chem. Soc., 2008, 130, 5434-5.

47.

Erez, R., Ebner, S., Attali, B., Shabat, D.

Chemotherapeutic bone-targeted bisphosphonate prodrugs with hydrolytic mode of activation

 

Bioorg. Med. Chem. Lett., 2008, 18, 816-20.

46.

Peretz, A., Degani-Katzav, M., Talmon, M., Danieli, E., Gopin, A., Malka, E., Nachman, R., Raz, A., Shabat, D., Attali, B.


A tale of switched functions: from cyclooxygenase inhibition to M-channel modulation in novel diphenylamine derivatives

PLoS ONE, 2007, 2, e1332.

45.

Danieli, E., Shabat, D.

 

Molecular Probe for Enzymatic Activity with Dual Output

Bioorg. Med. Chem. Lett., 2007, 15, 7318-24.

44.

Sagi, A., Segal, E., Satchi-Fainaro, R., Shabat, D.

Remarkable Drug-Release Enhancement with an Elimination-based AB3 Self-Immolative Dendritic Amplifier

Bioorg. Med. Chem., 2007, 15, 3720-7.

43.

Abramovich, L.A., Perry, R., Sagi, A., Gazit, E., Shabat, D.

Controlled Assembly of Peptide Nanotubes Triggered by Enzymatic Activation of Self-Immolative Dendrimers

ChemBioChem, 2007, 8, 859-62.

42.

Shamis, M., Shabat, D.

Single-Triggered AB6 Self-Immolative Dendritic Amplifier

Chem. Eur. J., 2007, 13, 4253-8.

41.

Perry, R., Amir, RJ., Shabat, D.

Substituent-Dependent Disassembly of Self-Immolative Dendrimers

New J. Chem., 2007, 31, 1307-12.

40.

Shamis, M., Barbas, C.F. III., Shabat, D.

A New Visual Screening Assay for Catalytic Antibodies with retro-Aldol retro-Michael Activity

 Bioorg. Med. Chem. Lett., 2007, 17, 1172-5.

39.

Peretz, A., Degani, N., Uziyel, Y., Gopin, A., Shabat, D., Attali, B.

Pre- and Post-Synaptic Activation of M-Channels by a Novel Opener Dampens Neuronal Firing and Transmitter Release

J. Neurophysiol., 2007, 97, 283-95.

38.

Amir, R.J., Danieli, E., Gopin, A., Shabat, D.

Receiver-Amplifier, Self-Immolative Dendritic Device

Chem. Eur. J., 2007, 13, 812-821.

37.

Gopin, A., Ebner, S., Attali, B., Shabat, D.

Enzymatic Activation of Second-Generation Dendritic Prodrugs: Conjugation of Self-Immolative Dendrimers with Polyethylene Glycol via Click Chemistry

Bioconjugate Chem., 2006, 17(6), 1432-1440.

37.jpg

36.

Shabat, D.

Self-Immolative Molecular Dendritic Systems

Bulletin of Israel Chemical Society, 2006, 22, 11-18.

35.

Yacoby, I., Shamis, M., Shabat, D., Benhar, I.

Targeting anti bacterial agents by drug-carrying filamentous bacteriophages

Antimicrob. Agents Chemother., 2006, 50(6), 2087-97.

34.

Shabat, D.

 

Self-Immolative Dendrimers as Novel Drug Delivery Platforms

J. Poly. Sci. Part A, 2006, 44(5), 1569-1578.

33.

Sagi, A., Rishpon, J., Shabat. D.

Amperometric Assay for Aldolase Activity: Antibody-Catalyzed Ferroceneamine Formation

Anal. Chem., 2006, 78(5), 1459-1461.

32.

Amir, R.J., Shabat, D.

Domino Dendrimers

Adv. Polym. Sci., 2006, 192: 59-93.

31.

Weinstain R, Lerner, R. A., Barbas C. F. III., Shabat, D.

Antibody-Catalyzed Asymmetric Intramolecular Michael Addition of Aldehydes and Ketones to Yield the disfavored Cis-Product

J. Am. Chem. Soc., 2005, 127, 13104-5.

30.

Amir R. J., Popkov, M., Lerner, R. A., Barbas C. F. III., Shabat, D.

Prodrug Activation Gated by a Molecular OR Logic Trigger

Angew. Chem., 2005, 44, 4378-81.

29.

Peretz, A., Degani, N., Uziyel, Y., Shabat, D., Attali, B.

Meclofenamic Acid and Diclofenac, Novel Templates of KCNQ2/Q3 Potassium Channel Openers, Depress Cortical Neuron Activity and Exhibit Anticonvulsant Properties

 

Molecular Pharmacology, 2005, 67, 1053-66.

28.

Flomenbom, O., Amir, R.J., Shabat, D., Klafter, J.

Some New Aspects of Dendrimer Applications

J. of Luminescence, 2005, 111, 315-25.

27.

Haba, K., Popkov, M., Shamis, M., Lerner, R. A., Barbas C. F. III., Shabat, D.

Single-Triggered Trimeric Prodrugs

Angew. Chem., 2005, 44, 716-20.

26.

Amir, R.J., Shabat, D.

Self-Immolative Dendrimer Biodegradability by Multi-Enzymatic Triggering

Chem. Commun., 2004, 21,1614-5.

25.

Shabat, D., Amir, R.J., Gopin, A., Pessah, N., Shamis, M.

A Chemical Adaptor System Designed To Link a Tumor‐Targeting Device with a Prodrug and an Enzymatic Trigger

Chem. Eur. J., 2004, 10, 2626-34.

24.

Gopin, A., Rader, C., and Shabat, D.

New Chemical Adaptor Unit Designed to Release a Drug from a Tumor Targeting Device by Enzymatic Triggering

Bioorg. Med. Chem., 2004, 12, 1853-8.

23.

Pessah, N., Reznik, M., Shamis, M., Yantiri, F., Xin, H., Bowdish, K., Shomron, N., Ast, G., Shabat, D.

Bioactivation of Carbamate-Based 20(S)-Camptothecin Prodrugs

Bioorg. Med. Chem., 2004, 12, 1859-66.

22.

Shamis, M., Lode, H.N., Shabat, D.

Bioactivation of Self-Immolative Dendritic Prodrugs by Catalytic Antibody 38C2

J. Am. Chem. Soc., 2004, 126, 1726-31.

21.

Amir, R.J., Pessah, N., Shamis, M., and Shabat, D.

Self-Immolative Dendrimers

Angew Chem Int Ed Engl., 2003, 42, 4494-4499.

20.

Rader, C., Turner, J.M., Heine, A., Shabat, D., Sinha, S.C., Wilson, I.A., Lerner, R.A., and Barbas, C.F.

A humanized aldolase antibody for selective chemotherapy and adaptor immunotherapy

J. Mol. Biol., 2003, 332, 889-899.

19.

Jikai, J., Shamis, M., Huebener, N., Schroeder, U., Wrasidlo, W., Wenkel, J., Lange, B., Gaedicke, G., Shabat, D., and Lode, H.N.

Neuroblastoma directed therapy by a rational prodrug design of etoposide as a substrate for tyrosine hydroxylase

Cancer Lett., 2003, 197, 219-224.

18.

Gopin, A., Pessah, N., Shamis, M., Rader, C., and Shabat, D.

A chemical adaptor system designed to link a tumor-targeting device with a prodrug and an enzymatic trigger

Angew. Chem. Int. Ed. Engl., 2003, 42, 327-332.

17.

Schroeder, U., Bernt, K.M., Lange, B., Wenkel, J., Jikai, J., Shabat, D., Amir, R., Huebener, N., Niethammer, A.G., Hagemeier, C., Wiebusch, L., Gaedicke, G., Wrasidlo, W., Reisfeld, R.A., and Lode, H.N.


Hydrolytically activated etoposide prodrugs inhibit MDR-1 function and eradicate established MDR-1 multidrug-resistant T-cell leukemia

 

Blood, 2003, 102, 246-253.

16.

Wrasidlo, W., Schroder, U., Bernt, K., Hubener, N., Shabat, D., Gaedicke, G., and Lode, H.
 

Synthesis, hydrolytic activation and cytotoxicity of etoposide prodrugs

Bioorg. Med. Chem. Lett., 2002, 12, 557-560.

15.

Satchi-Fainaro, R., Wrasidlo, W., Lode, H.N., and Shabat, D.

Synthesis and characterization of a catalytic antibody-HPMA copolymer-Conjugate as a tool for tumor selective prodrug activation

Bioorg. Med. Chem., 2002, 10, 3023-3029.

14.

Shabat, D., Lode, H.N., Pertl, U., Reisfeld, R.A., Rader, C., Lerner, R.A., and Barbas, C.F., 3rd.

In vivo activity in a catalytic antibody-prodrug system: Antibody catalyzed etoposide prodrug activation for selective chemotherapy

Proc. Natl. Acad. Sc.i U S A, 2001, 98, 7528-7533.

13.

Shabat, D., Rader, C., List, B., Lerner, R.A., and Barbas, C.F., 3rd.

Multiple event activation of a generic prodrug trigger by antibody catalysis

Proc Natl Acad Sci U S A, 1999, 96, 6925-6930.

12.

List, B.; Shabat, D.; Zhong, G.; Turner, J. M.; Li, A.; Bui, T.; Anderson, J.; Lerner, R. A.; Barbas, C. F., III

A Catalytic Enantioselective Route to Hydroxy-Substituted Quaternary Carbon Centers: Resolution of Tertiary Aldols with a Catalytic Antibody

J. Am. Chem. Soc., 1999, Vol. 121, pp 7283-7291.

11.

Shabat, D., List, B., Lerner, R. A. & Barbas, C. F., III.

A short enantioselective synthesis of 1-deoxy-L-xylulose by antibody catalysis

Tetrahedron Lett., 1999, 40, 1437-1440.

10.

Zhong, G.; Shabat, D.; List, B.; Anderson, J.; Sinha, S. C.; Lerner, R. A.; Barbas, C. F., III.

 

Catalytic enantioselective retro-aldol reactions: kinetic resolution of b-hydroxyketones with aldolase antibodies

Angew. Chem., Int. Ed., 1998, 37, 2481-2484.

09.

List, B.; Shabat, D.; Barbas, C. F., III; Lerner, R. A.

Enantioselective total synthesis of some brevicomins using aldolase antibody 38C2

Chem.--Eur. J., 1998, 4, 881-885.

08.

Hoffmann, T.; Zhong, G.; List, B.; Shabat, D.; Anderson, J.; Gramatikova, S.; Lerner, R. A.; Barbas, C. F., III.

Aldolase Antibodies of Remarkable Scope

J. Am. Chem. Soc. 1998, 120, 2768-2779.

07.

Shulman, A.; Keinan, E.; Shabat, D.; Barbas, C. F., III

Teaching catalytic antibodies to undergraduate students: an organic chemistry lab experiment

J. Chem. Educ., 1999; Vol. 76, pp 977-982.

06.

Shabat, D.; Shulman, H.; Itzhaky, H.; Reymond, J.-L.; Keinan, E.

Enantioselectivity vs. kinetic resolution in antibody catalysis: formation of the (S) product despite preferential binding of the (R) intermediate

Chem. Commun. (Cambridge), 1998, 1759-1760.

05.

Shabat, D.; Grynszpan, F.; Saphier, S.; Turniansky, A.; Avnir, D.; Keinan, E.

An efficient sol-gel reactor for antibody-catalyzed transformations

Chem. Mater., 1997, 9, 2258-2260.

04.

Shabat, D.; Sinha, S. C.; Reymond, J.-L.; Keinan, E.

Catalytic antibodies as probes of evolution: modeling of a primordial glycosidase

Angew. Chem., Int. Ed. Engl., 1996, 35, 2628-2632.

03.

Keinan, E.; Sinha, S. C.; Shabat, D.; Itzhaky, H.; Reymond, J.-L.

Asymmetric organic synthesis with catalytic antibodies

Acta Chem. Scand., 1996, 50, 679-687.

02.

Ghosh, P.; Shabat, D.; Kumar, S.; Sinha, S. C.; Grynszpan, F.; Li, J.; Noodleman, L.; Keinan, E.

Using antibodies to perturb the coordination sphere of a transition metal complex

Nature, 1996, 382, 339-341.

01.

Shabat, D.; Itzhaky, H.; Reymond, J.-L.; Keinan, E.

Antibody catalysis of a reaction otherwise strongly disfavored in water

Nature, 1995, 374, 143-5.

bottom of page